If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-84t+112=0
a = -16; b = -84; c = +112;
Δ = b2-4ac
Δ = -842-4·(-16)·112
Δ = 14224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14224}=\sqrt{16*889}=\sqrt{16}*\sqrt{889}=4\sqrt{889}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{889}}{2*-16}=\frac{84-4\sqrt{889}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{889}}{2*-16}=\frac{84+4\sqrt{889}}{-32} $
| 6g+2g−2g=18 | | 7x+7-9x+54=x | | 6x2-3(x4)=-4 | | 4x—2=10 | | 4x+36=33x | | d/6+71=81 | | 24=6+35t-16^2 | | 16-16f=-17f | | -5/8n=10 | | x+90+100=180 | | 8w-2=4w+1 | | 8=2-3w | | d+–7d−–6d−12d=12 | | 2|x-1|-1=11 | | -8x=-78x | | 5m-18=3m+2 | | -18=7x+-10x | | 0.7x0.85=0.595 | | (9-x)3=-33 | | (5x+2)=6-7x | | -m+2m=7/5 | | 11(n)=14 | | 3x+19+4x+9=32 | | 3/4(-3x+5)=-2x-3 | | 1/3(6x−9)=−11 | | 6=6+35t-16^2 | | (x-13)-5=-35 | | 4x-12=13-4x | | 950+20x= | | 5m–1=4m+5 | | -3(b+2)=-5 | | 5(4w–20)=4(5w-25) |